

Background and Status of Q1FY16 Global Implementation

April 20, 2015

"Where America's Climate, Weather, Ocean and Space Weather Services Begin"

Background

Taken from presentation by Rahul Mahajan et al. @ WWOSC 2014 Montreal

Ensemble-Var methods:

nomenclature

- *En-4DVar*: Propagate ensemble **P**^b from one assimilation window to the next (updated using EnKF for example), replace static **P**^b with ensemble estimate of **P**^b at start of 4DVar window, **P**^b propagated with tangent linear model within window.
- 4D-EnVar: Pb at every time in the assimilation window comes from ensemble estimate (TLM no longer used).
- As above, with *hybrid* in name: **P**^b is a linear combination of static and ensemble components.
- *3D-EnVar*: same as 4D ensemble Var, but **P**^b is assumed to be constant through the assimilation window (current NCEP implementation).

Current 2015 Dual-Res Coupled Hybrid Var/EnKF Cycling

Hybrid 4D EnVar

- Natural extension to operational 3D EnVar
 - Uses variational approach with already available 4D ensemble perturbations
- No need for development of maintenance of TLM and ADJ models
 - Makes use of 4D ensemble to perform 4D analysis
 - Modular, usable across a wide variety of models
- Highly scalable
 - Aligns with technological/computing advances
- Computationally inexpensive relative to 4DVAR (with TL/AD)
 - Estimates of improved efficiency by 10x or more, e.g. at Env. Canada (6x faster than 4DVAR on half as many cpus)
- Compromises to gain best aspects of (4D) variational and ensemble DA algorithms
- Other centers exploring similar path forward for deterministic NWP
 - Canada (potentially replace 4DVAR), UKMO (potentially replace En4DVar)

Single Observation (-3h) Example for 4D Variants

Low Resolution GFS/GDAS Experiments with real observations

- Basic configuration
 - T254L64 GFS, opnl obs, GFS/GDAS cycles 20120701-20121001
- PR3LOEX0
 - 3DVAR
- PRHLOEX1
 - Hybrid 3D EnVar, 80 member T126L64 ensemble with fully coupled (two-way) EnKF update, slightly re-tuned localization and inflation for lower resolution, TLNMC on total increment, 75% ensemble & 25% static

PRH4DEX1

- Hybrid 4D EnVar, TLNMC on all time levels, only 1x150 iterations
- Hourly TC relocation, O-G, binning of observations

500 hPa Die Off Curves

Northern Hemisphere

AC: HGT P500 G2/NHX GGZ, 20120720-20120930 0.9 0.B 4DHYB ----0.7 3DHYB ----3DVAR ----0.50.3 Difference w.r.t. PRHLOEX1 0.018 4DHYB-3DHYB 0.009 3DVAR-3DHYB AC differences outside of are significant at the .95% confidence level Forecast Hour

Southern Hemisphere

Move from 3D Hybrid (current operations) to Hybrid 4D-EnVar yields improvement that is about 75% in amplitude in comparison from going to 3D Hybrid from 3DVAR.

(Preliminary) Results and Comments

- 4D extension has positive impact in OSSE and real observation (low resolution) framework
- 4D EnVar does have slower convergence
- As configured, 4D EnVar was 40% more expensive than 3D hybrid (caveats being different iteration count, low resolution and machine variability)
 - TLNMC (balance constraint) over all time levels quite expensive
 - I/O potential issue, optimization is needed prior to implementation.
 - Option to post-process ensemble prior to use in assimilation in subsequent cycle

Proposed 2016 Dual-Res Coupled Hybrid Var/EnKF Cycling

Status

Based on real-time WCOSS parallels

Status summary

- Q1FY16 Analysis status table "living" DA status log
- Real-time parallel (pr4dev) phase 1 nodes
 - Evolving parallel with components added as ready
 - Includes
 - Hourly hybrid 4D-EnVar
 - Multivariate ozone assimilation
 - Observations: aircraft data bias correction and moisture assimilation, atmospheric motion vector QC and thinning improvements
 - Forecast model: resolution independent stochastic physics parameters (self scaling); IAU updates
 - Not yet included
 - CRTM v2.2, All-sky radiance assimilation, NSST
 - pr4dev statistics
- Second intermediate parallel for testing new components (prtest) – phase 2 nodes
 - Currently testing IAU, all other components identical to pr4dey
 - prtest statistics

pr4dev – 500mb NH AC

pr4dev – 500mb SH AC

pr4dev – 50 RMS ozone - Global

